3.1.24 \(\int \frac {1}{(c \csc (a+b x))^{7/2}} \, dx\) [24]

Optimal. Leaf size=105 \[ -\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}}-\frac {10 \cos (a+b x)}{21 b c^3 \sqrt {c \csc (a+b x)}}+\frac {10 \sqrt {c \csc (a+b x)} F\left (\left .\frac {1}{2} \left (a-\frac {\pi }{2}+b x\right )\right |2\right ) \sqrt {\sin (a+b x)}}{21 b c^4} \]

[Out]

-2/7*cos(b*x+a)/b/c/(c*csc(b*x+a))^(5/2)-10/21*cos(b*x+a)/b/c^3/(c*csc(b*x+a))^(1/2)-10/21*(sin(1/2*a+1/4*Pi+1
/2*b*x)^2)^(1/2)/sin(1/2*a+1/4*Pi+1/2*b*x)*EllipticF(cos(1/2*a+1/4*Pi+1/2*b*x),2^(1/2))*(c*csc(b*x+a))^(1/2)*s
in(b*x+a)^(1/2)/b/c^4

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3854, 3856, 2720} \begin {gather*} \frac {10 \sqrt {\sin (a+b x)} F\left (\left .\frac {1}{2} \left (a+b x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {c \csc (a+b x)}}{21 b c^4}-\frac {10 \cos (a+b x)}{21 b c^3 \sqrt {c \csc (a+b x)}}-\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*Csc[a + b*x])^(-7/2),x]

[Out]

(-2*Cos[a + b*x])/(7*b*c*(c*Csc[a + b*x])^(5/2)) - (10*Cos[a + b*x])/(21*b*c^3*Sqrt[c*Csc[a + b*x]]) + (10*Sqr
t[c*Csc[a + b*x]]*EllipticF[(a - Pi/2 + b*x)/2, 2]*Sqrt[Sin[a + b*x]])/(21*b*c^4)

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{(c \csc (a+b x))^{7/2}} \, dx &=-\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}}+\frac {5 \int \frac {1}{(c \csc (a+b x))^{3/2}} \, dx}{7 c^2}\\ &=-\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}}-\frac {10 \cos (a+b x)}{21 b c^3 \sqrt {c \csc (a+b x)}}+\frac {5 \int \sqrt {c \csc (a+b x)} \, dx}{21 c^4}\\ &=-\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}}-\frac {10 \cos (a+b x)}{21 b c^3 \sqrt {c \csc (a+b x)}}+\frac {\left (5 \sqrt {c \csc (a+b x)} \sqrt {\sin (a+b x)}\right ) \int \frac {1}{\sqrt {\sin (a+b x)}} \, dx}{21 c^4}\\ &=-\frac {2 \cos (a+b x)}{7 b c (c \csc (a+b x))^{5/2}}-\frac {10 \cos (a+b x)}{21 b c^3 \sqrt {c \csc (a+b x)}}+\frac {10 \sqrt {c \csc (a+b x)} F\left (\left .\frac {1}{2} \left (a-\frac {\pi }{2}+b x\right )\right |2\right ) \sqrt {\sin (a+b x)}}{21 b c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 70, normalized size = 0.67 \begin {gather*} -\frac {\sqrt {c \csc (a+b x)} \left (40 F\left (\left .\frac {1}{4} (-2 a+\pi -2 b x)\right |2\right ) \sqrt {\sin (a+b x)}+26 \sin (2 (a+b x))-3 \sin (4 (a+b x))\right )}{84 b c^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*Csc[a + b*x])^(-7/2),x]

[Out]

-1/84*(Sqrt[c*Csc[a + b*x]]*(40*EllipticF[(-2*a + Pi - 2*b*x)/4, 2]*Sqrt[Sin[a + b*x]] + 26*Sin[2*(a + b*x)] -
 3*Sin[4*(a + b*x)]))/(b*c^4)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 1.35, size = 213, normalized size = 2.03

method result size
default \(-\frac {\left (5 i \sqrt {\frac {-i \cos \left (x b +a \right )+\sin \left (x b +a \right )+i}{\sin \left (x b +a \right )}}\, \sqrt {\frac {i \cos \left (x b +a \right )-i+\sin \left (x b +a \right )}{\sin \left (x b +a \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (x b +a \right )\right )}{\sin \left (x b +a \right )}}\, \sin \left (x b +a \right ) \EllipticF \left (\sqrt {\frac {i \cos \left (x b +a \right )-i+\sin \left (x b +a \right )}{\sin \left (x b +a \right )}}, \frac {\sqrt {2}}{2}\right )-3 \left (\cos ^{4}\left (x b +a \right )\right ) \sqrt {2}+3 \left (\cos ^{3}\left (x b +a \right )\right ) \sqrt {2}+8 \left (\cos ^{2}\left (x b +a \right )\right ) \sqrt {2}-8 \cos \left (x b +a \right ) \sqrt {2}\right ) \sqrt {2}}{21 b \left (-1+\cos \left (x b +a \right )\right ) \left (\frac {c}{\sin \left (x b +a \right )}\right )^{\frac {7}{2}} \sin \left (x b +a \right )^{3}}\) \(213\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*csc(b*x+a))^(7/2),x,method=_RETURNVERBOSE)

[Out]

-1/21/b*(5*I*((I*cos(b*x+a)-I+sin(b*x+a))/sin(b*x+a))^(1/2)*((-I*cos(b*x+a)+sin(b*x+a)+I)/sin(b*x+a))^(1/2)*El
lipticF(((I*cos(b*x+a)-I+sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*sin(b*x+a)*(-I*(-1+cos(b*x+a))/sin(b*x+a))
^(1/2)-3*cos(b*x+a)^4*2^(1/2)+3*cos(b*x+a)^3*2^(1/2)+8*cos(b*x+a)^2*2^(1/2)-8*cos(b*x+a)*2^(1/2))/(-1+cos(b*x+
a))/(c/sin(b*x+a))^(7/2)/sin(b*x+a)^3*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*csc(b*x+a))^(7/2),x, algorithm="maxima")

[Out]

integrate((c*csc(b*x + a))^(-7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.17, size = 98, normalized size = 0.93 \begin {gather*} \frac {2 \, {\left (3 \, \cos \left (b x + a\right )^{3} - 8 \, \cos \left (b x + a\right )\right )} \sqrt {\frac {c}{\sin \left (b x + a\right )}} \sin \left (b x + a\right ) - 5 i \, \sqrt {2 i \, c} {\rm weierstrassPInverse}\left (4, 0, \cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) + 5 i \, \sqrt {-2 i \, c} {\rm weierstrassPInverse}\left (4, 0, \cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right )}{21 \, b c^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*csc(b*x+a))^(7/2),x, algorithm="fricas")

[Out]

1/21*(2*(3*cos(b*x + a)^3 - 8*cos(b*x + a))*sqrt(c/sin(b*x + a))*sin(b*x + a) - 5*I*sqrt(2*I*c)*weierstrassPIn
verse(4, 0, cos(b*x + a) + I*sin(b*x + a)) + 5*I*sqrt(-2*I*c)*weierstrassPInverse(4, 0, cos(b*x + a) - I*sin(b
*x + a)))/(b*c^4)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (c \csc {\left (a + b x \right )}\right )^{\frac {7}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*csc(b*x+a))**(7/2),x)

[Out]

Integral((c*csc(a + b*x))**(-7/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*csc(b*x+a))^(7/2),x, algorithm="giac")

[Out]

integrate((c*csc(b*x + a))^(-7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (\frac {c}{\sin \left (a+b\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c/sin(a + b*x))^(7/2),x)

[Out]

int(1/(c/sin(a + b*x))^(7/2), x)

________________________________________________________________________________________